
Getting Started with Ch

Harry H. Cheng

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10

B
es

se
l f

un
ct

io
ns

t

j0(t)
j1(t)
j2(t)
j3(t)

Copyright c© September, 2006 by Harry H. Cheng, All rights reserved

Table of Contents

1 Getting Started with an IDE 1

2 Getting Started with Ch Command Shell 6
2.1 Portable Commands for Handling Files. 7
2.2 Interactive Execution of Programs 8
2.3 Setup Paths and Finding Commands in Ch 9

3 Interactive Execution of Expressions and Statements 11

4 Interactive Execution of Functions 13

5 Interactive Execution of C++ Programming Features 14

6 High-Level Graphical Plotting 15
6.1 Plotting Function plotxy() 15
6.2 Plotting Function fplotxy() 15
6.3 Plotting Function fplotxyz() 17
6.4 Copying and Printing a Plot 17
6.5 Using a Plotting Class to Plot Multiple Sets of Data 17

Exercises 23

Index 24

i

1 GETTING STARTED WITH AN IDE

Getting Started with Ch

Ch is a C/C++ interpreter. It is a superset of C with classes inC++ and other high-level extensions.
Possible uses for Ch include but are not limited to cross-platform scripting, shell programming, 2D/3D plot-
ting, numerical computing, and embedded scripting. Because Ch is interpretive and does not require tedious
edit/compile/link/debug cycles, it is more suitable for interactive classroom presentations in teaching and
for students learning C and C++. The latest version of Ch for different platforms can be downloaded from
the internet athttp://www.softingeration.com. This document presents a quick introduction
on how to use this C/C++ interperter for learning C and C++.

1 Getting Started with an IDE

An Integrated Development Environment (IDE) can be used to develop C and C++ programs. It can typically
be used to edit programs with added features of automatic syntax highlighting and run the programs within
the IDE. ChSciTE is an open source Ch IDE for developing and running C/Ch/C++ programs in Windows,
Mac OS X, and Unix. With Ch installed on the machine, the edited program can readily be executed in
ChSciTE like in any other IDE. The source files are executed interpretively without compilation.

The latest version of ChSciTE for different platforms can bedownloaded from the internet at
http://chscite.sourceforge.net. ChSciTE can be launched by running the commandchscite.
In Windows, ChScitTE can also be conveniently launched by double clicking its icon shown in Figure 1 on
the desktop.

Text editing in ChSciTE works similarly to most Macintosh orWindows editors such as Notepad with
the additional feature of automatic syntax styling. The user interface can be in one of 30 local languages
such as German, French, Chinese, and Korea. ChSciTE can holdmultiple files in memory at one time but
only one file will be visible. By default, ChSciTE allows up to20 files to be in memory at once.

As an example, open a new document, and type

#include <stdio.h>

int main() {
printf("Hello, world!\n");
return 0;

}

in the text as shown in Figure 2 in the editing pane. The program appears colored due to syntax highlighting.
Save the document as a file namedhello.c as shown in Figure 3. The programhello.c in

CHHOME/demos/bin/hello.c, whereCHHOME is the home directory for Ch such asC:/Ch in Win-
dows for the directoryCh in theC: drive, can also be loaded usingFile | Open command.

Figure 1. A ChSciTE icon on a desktop in Windows.
.

1

1 GETTING STARTED WITH AN IDE

Figure 2. The program edited inside the editing pane in ChSciTE.

Figure 3. Save the edited program in ChSciTE.

2

1 GETTING STARTED WITH AN IDE

Figure 4. Run the program inside the editing pane in ChSciTE.
.

Perform theTools | Run as shown in Figure 4 to execute the programhello.c. Instead of per-
forming theTools | Run command, pressing function keyF5 will have the same effect of executing the
program.

There are two panes in ChSciTE, the editing pane and the output pane. The output pane is located either
below the editing pane or on the right. Initially, it is of zero size, but it can be made larger by dragging the
divider between it and the editing pane. By default, the output from the program are directed into the output
pane below the editing pane. TheOptions | Vertical Split command can be used to move the
output pane to the right of the editing pane.

When the programhello.c is executed, the output window will be made visible if it is not already
visible and will display

ch -u hello.c
Hello, world
Exit code: 0

as shown in Figure 5. The first blue line from ChSciTE shows thecommand it will use to run the program.
The black line is the output from running the Ch program. The last blue line is from ChSciTE showing
that the program has finished and displays its exit code. An exit code of 0 indicates that the program is
terminated successfully by the statement

return 0;

If a failure had occurred during the execution of the programor the returned value was non-zero, the exit
code would be -1.

ChSciTE understands the error messages produced by Ch. To see this, add a mistake to the program by
changing the line

printf("Hello, world");

to

printf("Hello, world";

3

1 GETTING STARTED WITH AN IDE

Figure 5. The output from executing program hello.c.
.

Perform theTools | Run the modified program. The results should look below

ERROR: syntax error before or at line 4 in file hello.c
==>: printf("Hello, world\n";
BUG: printf("Hello, world\n"; <== ???

ERROR: cannot execute command ’hello.c’

as shown in Figure 6. Because the program fails to execute, the exit code -1 is displayed at the end of the
output pane as

Exit code: -1

Click the red colored output line in Figure 6. the line with incorrect syntax will be highlighted as shown in
Figure 7. When the error message in the output pane with a linenumber is clicked using the left button of
the mouse, the error message in the output pane and the appropriate line in the editing pane are highlighted
with a yellow background as shown in Figure 7. The caret is moved to this line and the pane is scrolled
if needed to show the line. While it is easy to see where the problem is in this simple case, with a large
file, theTools | Next Message command can be used to view each of the reported errors. Upon
performingTools | Next Message, the first error message in the output pane and the appropriate line
in the editing pane are also highlighted with a yellow background.

If command execution has failed and is taking too long to complete, then the
Tools | Stop Executing command can be used.

ChSciTE can also execute programs with the user’s input through C functions such asscanf(). It
can also handle command line options. More information about running C and C++ programs in Ch using
ChSciTE IDE can be obtained on-line by clicking ChSciTE Helpas shown in Figure 8.

4

1 GETTING STARTED WITH AN IDE

Figure 6. The error line in output from executing program hello.c.

Figure 7. Finding the error line in output from executing program hello.c.

5

2 GETTING STARTED WITH CH COMMAND SHELL

Figure 8. Get on-line help on how to use ChSciTE.

Figure 9. A Ch icon on a desktop in Windows.

2 Getting Started with Ch Command Shell

Ch is also a command shell in which commands are processed. Like other commonly used shells such as the
MS-DOS shell, Bash-shell, or C-shell, commands can be executed in a Ch shell. Unlike these conventional
shell, expressions, statements, functions and programs inC and C++ can be readily executed in a Ch shell.
Therefore, the Ch command shell is an ideal solution for teaching and learning C/C++. An instructor can
use Ch interactively in classroom presentations with a laptop to quickly illustrate programming features,
especially when answering students’ questions. Learners can also quickly try out different features of C/C++
without tedious compile/link/execute/debug cycles. To assist beginners in learning, Ch has been especially
developed with many helpful warning and error messages, as an alternative to crashing with cryptic, arcane
messages likesegmentation faultandbus error.

A Ch shell can be launched by running the commandch. In Windows, a Ch command shell can also
be conveniently launched by clicking its icon shown in Figure 9 on the desktop. Assume the user account is
the administrator, after a Ch shell is launched in Windows, by default, the screen prompt becomes

C:/Documents and Settings/Administrator>

whereC:/Documents and Settings/Administrator is the user’shome directoryas shown in
Figure 10 on the desktop. The displayed directory
C:/Documents and Settings/Administrator is also called thecurrent working directory. If
the user account is not the administrator, the account nameAdministrator in the home directory shall be
changed accordingly. The prompt indicates that the system is in a Ch shell and is ready to accept the user’s
terminal keyboard input. The default prompt in a Ch shell canbe reconfigured. If the input typed in is syn-
tactically correct, it will be executed successfully. Uponcompletion of the execution, the system prompt>

will appear again. Otherwise, it prints out the corresponding error messages to assist the user in debugging
the program.

6

2 GETTING STARTED WITH CH COMMAND SHELL 2.1 Portable Commands for Handling Files.

Figure 10. A Ch command shell.

Table 1. Portable commands for handling files.
Command Usage Description
cd cd change to the home directory

cddir change to the directorydir
cp cpfile1 file2 copyfile1 to file2
ls ls list contents in the working directory
mkdir mkdir dir create a new directorydir
pwd pwd print (display) the name of the working directory
rm rm file removefile
chmod chmod +xfile change the mode offile to make it executable

All statements and expressions of C can be executed interactively in a Ch command shell as shown
in Figure 10. For example, the outputHello, world can be obtained by calling the functionprintf ()
interactively as shown below.

C:/Documents and Settings/Administrator> printf("Hello, world")
Hello, world

In comparison with Figure 10, the last promptC:/Documents and Settings/Administrator>
is not displayed in the presentation of this book. Note that the semicolon at the end of a statement in a C
program is optional when the corresponding statement is executed in command mode. There is no semicolon
in calling the functionprintf in the above execution.

2.1 Portable Commands for Handling Files.

At the system prompt>, not only C programs and statements, but also any other commands, such aspwd
for printing the current working directory, can be executed. In this scenario, Ch is used as a command shell
in the same manner as Bash-shell, C-shell, or Korn-shell in Unix or MS-DOS shell in Windows.

There are hundreds of commands along with their online documentation in the system. No one knows
all of them. Every computer wizard has a small set of working tools that are used all the time, plus a vague
idea of what else is out there.

In this section, we will describe how to use the most commonlyused commands for handling files listed
in Table 1 by examples. It should be emphasized again that these commands running in the Ch shell are
portable across different platforms. Using these commands, a user can effectively manipulate files on the
system to run C programs.

7

2 GETTING STARTED WITH CH COMMAND SHELL 2.2 Interactive Execution of Programs

Assume that Ch is installed in the directoryC:/Ch in Windows by default. The current working direc-
tory is C:/Documents and Settings/Administrator, which is also the user’s home directory.
The application of portable commands for file handling can beillustrated by interactive execution of com-
mands in a Ch shell below.

C:/Documents and Settings/Administrator> mkdir c99
C:/Documents and Settings/Administrator> cd c99
C:/Documents and Settings/Administrator/c99> pwd
C:/Documents and Settings/Administrator/c99
C:/Documents and Settings/Administrator/c99> cp C:/Ch/demos/bin/hello.c hello.c
C:/Documents and Settings/Administrator/c99> ls
hello.c
C:/Documents and Settings/Administrator/c99>

As shown inUsagein Table 1, the commandmkdir takes one argument as a directory to be created. We
first create a directory calledc99 using the command

mkdir c99

Then, change to this new directoryC:/Documents and Settings/Administrator/c99 using
command

cd c99

Next, display the current working directory with the command

pwd

A C programhello.c shown in Program 2 in the directoryC:/Ch/demos/bin is copied to the working
directory with the same file name using the command

cp C:/Ch/demos/bin/hello.c hello.c

Finally, files in the current directory are listed using the command

ls

At this point, there is only one file hello.c in the directory
C:/Documents and Settings/Administrator/c99. It is recommended that you save all your
developed C programs in this directory.

2.2 Interactive Execution of Programs

It is very simple and easy to run C programs interactively without compilation in a Ch shell. For example,
assume thatC:/Documents and Settings/Administrator/c99 is the current working direc-
tory as presented in the previous section. The programhello.c in this directory can be executed in Ch to
get the output ofHello, world as shown below.

C:/Documents and Settings/Administrator/c99> hello.c
Hello, world
C:/Documents and Settings/Administrator/c99> _status
0

8

2 GETTING STARTED WITH CH COMMAND SHELL2.3 Setup Paths and Finding Commands in Ch

The exit code from executing a program in a Ch command shell iskept in the system variablestatus.
Because the programhello.c has been executed successfully, the exit code is 0 as shown inthe above
output.

In Unix, in order to readily use the C programhello.c as a command, the file has to be executable.
The commandchmodcan change the mode of a file. The following command

chmod +x hello.c

will make the programhello.c executable so that it can run in a Ch command shell.

2.3 Setup Paths and Finding Commands in Ch

When a command is typed into a prompt of a command shell for execution, the command shell will search
for the command in prespecified directories. In a Ch shell, the system variablepath of string type con-
tains the directories to be searched for the command. Each directory is separated by a semicolon inside
the string path. When a Ch command shell is launched, the system variablepath contains some default
search paths. The user can add new directories to the search paths for the command shell by using the
string functionstradd() which adds arguments of string type and returns it as a new string. For example,
the directoryC:/Documents and Settings/Administrator/c99 is not in the search paths for
a command. If you try to run programhello.c in this directory when the current working directory is
C:/Documents and Settings/Administrator. The Ch shell will not be able to find this pro-
gram as shown below and give two error messages.

C:/Documents and Settings/Administrator> hello.c
ERROR: variable ’hello.c’ not defined
ERROR: command ’hello.c’ not found

When Ch is launched or a Ch program is executed, by default, itwill execute the startup file.chrc in
Unix or chrc in Windows in the user’s home directory if it exists. In the remaining presentation, it is
assumed that Ch is used in Windows with a startup filechrc in the user’s home directory. This startup
file typically sets up the search paths for commands, functions, header files, etc. By default, there is no
startup file in a user’s home directory. The system administrator may add such a startup file in a user’s home
directory. However, the user can execute Ch with the option -d as follows

ch -d

to copy a sample startup file from the directoryCHHOME /config/ to the user’s home directory if there is
no startup file in the home directory yet. Note thatCHHOME is not the string“CHHOME” , instead it
uses the file system path under which Ch is installed. For example, by default, Ch is installed inC:/Ch in
Windows and/usr/local/ch in Unix. In Windows, the command in a Ch shell below

C:/Documents and Settings/Administrator> ch -d

will create a starup file chrc in the user’s home directory
C:/Documents and Settings/Administrator. This local Ch initialization startup filechrc
can be opened for editing the search paths by ChSciTE editor as shown in Figure 11.

To include the directoryC:/Documents and Settings/Administrator/c99 in the search
paths for a command, the following statement

_path = stradd(_path, "C:/Documents and Settings/Administrator/c99;");

9

2 GETTING STARTED WITH CH COMMAND SHELL2.3 Setup Paths and Finding Commands in Ch

Figure 11. Open the local Ch initialization startup file for editing.

needs to be added to the startup filechrc in the user’s home directory so that the command hello.c in
this directory can be invoked regardless of what the currentworking directory is. After the directory
C:/Documents and Settings/Administrator/c99 has been added to the search path,path,
you need to restart a Ch command shell. Then, you will be able to execute the programhello.c in this
directory as shown below.

C:/Documents and Settings/Administrator> hello.c
Hello, world

Similar to path for commands, the header files in Ch are searched in directories specified in the system
variable ipath. Each path is also delimited by a semicolon. For example, thestatement below

_ipath = stradd(_ipath, "C:/Documents and Setting/Administrator/c99;");

adds the directoryC:/Documents and Setting/Administrator/c99 to the search paths for
header files. One can also add this directory to the function file search paths by the statement

_fpath = stradd(_fpath, "C:/Documents and Setting/Administrator/c99;");

In Unix, the search paths for commands by default do not contain the current working directory. To include the
current working directory in the search paths for a command,the following statement

_path = stradd(_path, ".;");

in startup file .chrc in the user’s home directory needs to be added. Function call
stradd(_path, ".;") adds the current directory represented by ’.’ to the system search pathspath.

10

3 INTERACTIVE EXECUTION OF EXPRESSIONS AND STATEMENTS

3 Interactive Execution of Expressions and Statements

For simplicity, only the prompt> in a Ch command shell will be displayed in the remaining presentation. If a C
expression is typed in, it will be evaluated by Ch. The resultthen will be displayed on the screen. For example, if the
expression1+3*2 is typed in, the output will be 7 as shown:

> 1+3*2
7

Any valid C expression can be evaluated in a Ch shell. Therefore, Ch can be conveniently used as a calculator.
As another example, one can declare a variable at the prompt.Then, use the variable in the subsequent calculations

as shown:

> int i
> sizeof(int)
4
> i = 30
30
> printf("%x", i)
1e
> printf("%b", i)
11110
> i = 0b11110
30
> i = 0x1E
30
> i = -2
-2
> printf("%b", i)
11111111111111111111111111111110
> printf("%32b", 2)
00000000000000000000000000000010

In the above C statements, variablei is declared as int type with 4 bytes. Then, the integer value 30 for i is then
displayed in decimal, hexadecimal, and binary numbers. Theintegral constants in different number systems can
also be assigned to variablei. The two’s complement representation of the negative number −2 is also displayed.
Characteristics for all other data types in C can also be presented interactively. Different format specifiers for the
families of input function fscanf() and output functionfprintf () using file streams opened by function fopen() can also
be tried out this way.

By default, a value of float or double type is displayed with two four digits after the decimal point, respectively.
For example,

> float f = 10
> 2*f
20.00
> double d = 10
> d
10.00000

All C operators can be used interactively as shown:

> int i=0b100, j = 0b1001
> i << 1
8
> printf("%b", i|j)
1101

11

3 INTERACTIVE EXECUTION OF EXPRESSIONS AND STATEMENTS

The concept of pointers and addresses of variables can be illustrated as shown:

> int i=10, *p
> &i
1eddf0
> p = &i
1eddf0
> *p
10
> *p = 20
20
> i
20

In this example, the variablep of pointer to int points to the variablei. The relation of arrays and pointers can be
illustrated as follows:

> int a[5] = {10,20,30,40,50}, *p;
> a
1eb438
> &a[0]
1eb438
> a[1]
20
> *(a+1)
20
> p = a+1
1eb43c
> *p
20
> p[0]
20

Expressionsa[1], *(a+1), *p, andp[0] all refer to the same element. Multi-dimensional arrays canalso be
handled interactively. The boundary of an array is checked in Ch to detect potential bugs. For example,

> int a[5] = {10,20,30,40,50}
> a[-1]
WARNING: subscript value -1 less than lower limit 0
10
> a[5]
WARNING: subscript value 5 greater than upper limit 4
50
> char s[5]
> strcpy(s, "abc")
abc
> s
abc
> strcpy(s, "ABCDE")
ERROR: string length s1 is less than s2 in strcpy(s1,s2)
ABCD
> s
ABCD

12

4 INTERACTIVE EXECUTION OF FUNCTIONS

The allowed indices for arraya of 5 elments are from 0 to 4. Arrays can only hold 5 characters including a null
character. Ch can catch bugs in existing C code related to thearray boundary overrun.

The alignment of a C structure or C++ class can also be examined as shown:

> struct tag {int i; double d;} s
> s.i =20
20
> s
.i = 20
.d = 0.0000
> sizeof(s)
16

In this example, although the sizes of int and double are 4 and8, respectively, the size of structures with two fields of
int and double types is 16, instead of 12, for the proper alignment.

4 Interactive Execution of Functions

A program can be divided into many separate files. Each file consists of many related functions, at the top level, which
are accessible to any part of a program. All functions in the Cstandard libraries can be executed interactively and can
be used inside user defined functions. For example, in the interactive execution:

> srand(time(NULL))
> rand()
4497
> rand()
11439
> double add(double a, double b) {double c; return a+b+sin(1.5);}
> double c
> c = add(10.0, 20)
30.9975

The random number generator functionrand() is seeded with a time value insrand(time(NULL). Function
add() which calls type-generic mathematical functionsin() is defined at the prompt and then used.

A file that contains more than one function definition is usually suffixed with.ch to identify itself as part of a Ch
program. One can create a function file in a Ch programming environment. Afunction file in Ch is a file that contains
only one function definition. The name of a function file ends in .chf, such asaddition.chf. The names of the
function file and function definition inside the function filemust be the same. The functions defined using function
files are treated as if they were the system built-in functions in Ch.

Similar to path for commands, a function is searched based on the search paths in the system variablefpath for
function files. Each path is delimited by a semicolon. By default, the variable fpath contains the pathslib/libc,
lib/libch, lib/libopt, andlibch/numeric in the home directory of Ch. If the system variablefpath
is modified interactively in a Ch shell, it will be effective only for functions invoked in the current shell interactively.
For running scripts, the setup of function search paths in the current shell will not be used and inherited in subshells.
In this case, the system variablefpath can be modified in startup filechrc in Windows or.chrc in Unix at the user’s
home directory.

For example, if a file namedaddition.chf contains the program shown in Program 1, the functionaddition()
will be treated as a system built-in function, which can be called to compute the suma+b of two input argumentsa and
b. Assume that the function file addition.chf is located at
C:/Documents and Settings/Administrator/c99/addition.chf, the directory
C:/Documents and Settings/Administrator/c99 should be added to the function search path in the
startup file.chrc in Unix or fpath in Windows in the user’s home directory with the following statement.

_fpath=stradd(_fpath, "C:/Documents and Settings/Administrator/c99;");

13

5 INTERACTIVE EXECUTION OF C++ PROGRAMMING FEATURES

/* File: addition.chf */
int addition(int a, int b) {

int c;
c = a + b;
return c;

}

Program 1. Function fileaddition.chf.

/* File: program.ch */
int main() {

int a, b, c;

a = 2;
b = 3;
c = addition(a, b);
printf("c = %d\n ", c);
return 0;

}

Program 2. Program using function fileaddition.chf.

Functionaddition() then can be used either interactively in command mode as shown below,

> int i = 9
> i = addition(3, i)
12

or inside programs. In Program 2, the functionaddition() is called without a function prototype in themain()
function so that the function prototype defined inside the function fileaddition.chf will be invoked. The output
of Program 2 isc = 5. If the search paths for function files have not been properlysetup, a warning message such as

WARNING: function ’addition()’ not defined

will be displayed, when the functionaddition() is called.
When a function is called interactively in a Ch shell, the function file will be loaded. If you modify a function

file after the function has been called, the subsequent callsin the command mode will still use the old version of
the function definition that had been loaded. To invoke the modified version of the new function file, you can either
remove the function definition, sayaddition, in the system using the command

> remvar addition

or start a new Ch shell.

5 Interactive Execution of C++ Programming Features

Not only C++ programs can be executed in Ch, but also classes and some C++ features are supported in Ch as shown
below for interactive execution of C++ code.

> int i
> cin >> i
10
> cout << i
10

14

6 HIGH-LEVEL GRAPHICAL PLOTTING

> class tagc {private: int m_i; public: void set(int); int get(int &);}
> void tagc::set(int i) {m_i = 2*i;}
> int tagc::get(int &i) {i++; return m_i;}
> tagc c
> c.set(20)
> c.get(i)
40
> i
11
> sizeof(tagc)
4

The input and output can be handled usingcin andcout in C++. The public methodtagc::set() sets the
private member fieldm i, whereas the public methodtagc::get() gets its value. The argument of method
tagc::get() is passed by reference. The size of the classtagc is 4 bytes which does not include the memory for
member functions.

6 High-Level Graphical Plotting

Graphical plotting is important for the visualization and interpretation of numerical results. C does not support graph-
ical plotting by default. C programmers typically generatedata in a file and then use other software packages, such
as Excel, to plot the data in the file. This is an inconvenient process for the development of algorithms. Ch provides
the simplest possible solution for two and three dimensional graphical plottings within the framework of C/C++. Two
and three dimensional graphical plots can be easily generated in Ch by plotting functions or member functions in a
graphical library. Plots in Ch can be created from data arrays or files, and can be displayed on the screen, saved as
an image file in different file formats, or output to thestdoutstream in a proper image format for display in a Web
browser through a Web server.

6.1 Plotting Function plotxy()

Functionplotxy() is a high-level plotting function defined in header filechplot.h. Functionplotxy() is useful for
generating two-dimensional plots. The functionplotxy() can be taken as if it had the following function prototype.

int plotxy(double x[], double y[],
char *title, char *xlabel, char *ylabel);

The arrayx stores data for the x-axis, while arrayy stores data for the y-axis. The title and labels for axes are specified
by the argumentstitle, xlabel, andylabel, respectively.

Program 3 provides a simple example of using theplotxy() function for generating the plot of a sine wave forx

from 0 to 2π radians. The variablesx0 andxf represent the initial and final values ofx, respectively. The macro
NUMPOINTS is defined as the number of 37 points. Afor -loop is used to generate 37 data points for the plot, which
is shown in Figure 12. The statement

x[i] = x0+i*(xf - x0)/(NUMPOINTS-1);

generates the x-coordinates of the plot with the number of points specified in the macro NUMPOINTS for x fromt0
to tf. Note that the title of the plot and axes are specified as strings"function sin(x)", "x", and"sin(x)",
respectively.

6.2 Plotting Function fplotxy()

Functionplotxy() in the previous section can be used to plot data stored in arrays. To plot a function with a single
variable, the plotting functionfplotxy() can be used. The functionfplotxy() can be taken as if it had the following
function prototype.

15

6 HIGH-LEVEL GRAPHICAL PLOTTING 6.2 Plotting Function fplotxy()

/* File: plotxy.cpp */
#include <math.h>
#include <chplot.h>

#define NUMPOINTS 37

int main() {
double x[NUMPOINTS], y[NUMPOINTS], x0, xf;
int i;

x0 = 0;
xf = 2*M_PI;
for(i=0; i<NUMPOINTS; i++) {

x[i] = x0 + i*(xf - x0)/(NUMPOINTS-1);
y[i] = sin(x[i]);

}
plotxy(x, y, "function sin(x)", "x", "sin(x)");
return 0;

}

Program 3. Plotting data using function plotxy().

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7

si
n(

x)

x

function sin(x)

Figure 12. Output plot of Program 3.

16

6 HIGH-LEVEL GRAPHICAL PLOTTING 6.3 Plotting Function fplotxyz()

/* plot a function in Ch */
#include<math.h>
#include<chplot.h>

double func(double x) {
return sin(x);

}

int main() {
double x0 = 0, xf = 2*M_PI;
int num = 37;

fplotxy(func, x0, xf, num, "function sin(x)", "x", "sin(x)");
}

Program 4. Plotting a function using fplotxy().

int fplotxy(double (*func)(double), double x0, double xf, int num,
char *title, char *xlabel, char *ylabel);

It plots a function with the variablex in the rangex0 ≤ x ≤ xf. The function to be plotted,func, is specified as a
pointer to a function that takes an argument of double type and returns a double type. The argumentsx0andxf are the
end-points of the range to be plotted. The argumentnumspecifies how many points in the range are to be plotted. The
number of points plotted are evenly spaced in the range. The remaining three arguments label the title and axes of a
plot.

As an example, Program 4 plots the functionsin() from 0 to2π shown in Figure 12.

6.3 Plotting Function fplotxyz()

Functionfplotxyz() can be used to plot a function with two variables. The function fplotxyz() is prototyped as follows.

int fplotxyz(double (*func)(double, double), double x0, double xf,
int numx, int numy, char *title, char *xlabel,
char *ylabel, char *zlabel);

It generates a three-dimensional plot for a function with two variablesx andy in the rangex0≤ x ≤ xf andy0≤ y ≤
yf. The function to be plotted,func, is specified as a pointer to a function that takes twodoublearguments and returns
a double. The argumentsx numandy numspecify how many points in thex andy ranges to be plotted, respectively.
The remaining four arguments label the title and axes of a plot.

As an example, Program 4 uses the plotting functionfplotxy() to plot the functioncos(x) sin(y) for x andy in the
range-3 ≤ x ≤ 3 and-4 ≤ y ≤ 4. It uses 80 points for the x coordinates and 100 points for they coordinates. The
generated plot is shown in Figure 13.

6.4 Copying and Printing a Plot

In Windows, the plot displayed in Figure 12 can be copied to the clipboard first. Then, paste it to other programs such
as a Word document. Click the plot icon on the upper left corner of the plot, it will bring up several menus. Click
Copy to Clipboard under theOptions menu as shown in Figure 14, it will save the plot in the clipboard first.
The plot can be printed out by clickingPrint under theOptions menu. Click the line in output with red color in
Figure 6.

6.5 Using a Plotting Class to Plot Multiple Sets of Data

The plotting capabilities in Ch are implemented in a plotting classCPlot. The function call

17

6 HIGH-LEVEL GRAPHICAL PLOTTING 6.5 Using a Plotting Class to Plot Multiple Sets of Data

/* plot a function in Ch */
#include<math.h>
#include<chplot.h>

double func(double x) {
return sin(x);

}

int main() {
double x0 = 0, xf = 2*M_PI;
int num = 37;

fplotxy(func, x0, xf, num, "function sin(x)", "x", "sin(x)");
}

Program 5. Plotting a function with two variables using fplotxyz().

-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

-3
-2

-1
0

1
2

3 -4
-3

-2
-1

0
1

2
3

4

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

z

function cos(x)*sin(y)

x

y

z

Figure 13. Output plot of Program 5.

18

6 HIGH-LEVEL GRAPHICAL PLOTTING 6.5 Using a Plotting Class to Plot Multiple Sets of Data

Figure 14. Copy a plot to the clipboard.

plotxy(x, y, title, xlabel, ylabel);

is equivalent to

class CPlot plot;
plot.data2DCurve(x, y, n);
plot.title(title);
plot.label(PLOT_AXIS_X, xlabel);
plot.label(PLOT_AXIS_Y, ylabel);
plot.plotting();

as shown in Program 6, which generates the same plot displayed in Figure 12.
The data for plotting of 2D curve are added to an instance ofCPlot class by the member function

int CPlot::data2DCurve(double x[], double y[], int n);

Both one-dimensional arraysx andy have the same number of elements of sizen.
The title and labels on axes are annotated using corresponding member functions

void CPlot::title(char *title);

and

void CPlot::label(int axis, char *label);

respectively. The argumentaxis of member functionCPlot::label() is the axis to be set. The valid macros foraxis
are listed in Table 2 and defined in header filechplot.h. At the point where member functionCPlot::plotting () is
called, a plot is generated.

Many other member functions of the plotting class can be usedto specify the desired features for the generated
plot and create different output.

As an example for plotting with multiple data sets, a plot with two sets of data for sine and cosine functions from
0 to 360 degrees with legends shown in Figure 15 is generated by Program 7. In Program 7, arrayx contains the

19

6 HIGH-LEVEL GRAPHICAL PLOTTING 6.5 Using a Plotting Class to Plot Multiple Sets of Data

/* File: plotclass.cpp */
#include <math.h>
#include <chplot.h>

#define NUMPOINTS 36

int main() {
double x[NUMPOINTS], y[NUMPOINTS], x0, xf;
char title[] = "function sin(x)",

xlabel[] = "x",
ylabel[] = "sin(x)";

int i;
CPlot plot;

x0 = 0;
xf = 2*M_PI;
for(i=0; i<NUMPOINTS; i++) {

x[i] = x0 + i*(xf - x0)/(NUMPOINTS-1);
y[i] = sin(x[i]);

}
plot.data2DCurve(x, y, NUMPOINTS);
plot.title(title);
plot.label(PLOT_AXIS_X, xlabel);
plot.label(PLOT_AXIS_Y, ylabel);
plot.plotting();
return 0;

}

Program 6. Plotting data usin the plotting class CPlot.

Table 2. The macros for axes.
PLOT AXIS X Select the x axis only.
PLOT AXIS Y Select the y axis only.
PLOT AXIS Z Select the z axis only.
PLOT AXIS XY Select the x and y axes.
PLOT AXIS XYZ Select the x, y, and z axes.

20

6 HIGH-LEVEL GRAPHICAL PLOTTING 6.5 Using a Plotting Class to Plot Multiple Sets of Data

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

am
pl

itu
de

degree

Sine and Cosine Waves

sin(x)
cos(x)

Figure 15. A plot with two sets of data and legends.

data for the x-coordinates. arraysy1 andy2 each contain a data set for the y-coordinates. The member function
CPlot::data2DCurve() is called twice to add two sets of data to the plot. A string of legendcan be added to the plot
by member function

void CPlot::legend(char *legend, int num);

The argumentlegend is a string of characters. The number of data set to which the legend is added is indicated by
the second argumentnumof int type. Numbering of the data sets starts with zero. New legends will replace previously
specified legends. This member function shall be called after plotting data have been added by the member function
CPlot::data2DCurve().

The member function

void CPlot::legendLocation(double x, double y, ... /* [double z] */);

specifies the position of the plot legend using plot coordinates(x, y, y)of double type. For a two-dimensional plot,
only the coordinates(x, y)are needed. The position specified is the location of the top part of the space separating the
markers and labels of the legend as shown in Figure 16. By default, the location of the legend is near the upper-right
corner of the plot.

The range an axis can be set by member functionCPlot::axisRange(),

void CPlot::axisRange(int axis, double minimum, double maximum,
... /* [double incr] */);

The valid macros foraxisare listed in Table 2. The minimum and maximum values for an axis are given in second and
third arguments, respectively. The increment between tickmarks is given inincr. By default, this value is calculated
internally. For example, function callplot.axisRange(PLOT AXIS X, 0, 360, 30) sets the range of the
x-axis from 0 to 360 degrees with tick marks at every 30 degrees.

21

6 HIGH-LEVEL GRAPHICAL PLOTTING 6.5 Using a Plotting Class to Plot Multiple Sets of Data

/* File: legend.cpp */
#include<math.h>
#include<chplot.h>

#define NUMPOINTS 36

int main() {
int i;
double x0, xf, x[NUMPOINTS], y1[NUMPOINTS], y2[NUMPOINTS];
char *title="Sine and Cosine Waves",

*xlabel="degree", *ylabel="amplitude";
class CPlot plot;

x0 = 0;
xf = 360;
for(i = 0; i < NUMPOINTS; i++) {

x[i] = x0 + i*(xf - x0)/(NUMPOINTS-1);
y1[i] = sin(x[i]*M_PI/180);
y2[i] = cos(x[i]*M_PI/180);

}
plot.data2DCurve(x, y1, NUMPOINTS);
plot.data2DCurve(x, y2, NUMPOINTS);
plot.legend("sin(x)", 0);
plot.legend("cos(x)", 1);
plot.legendLocation(350, 0.5);
plot.title(title);
plot.label(PLOT_AXIS_X, xlabel);
plot.label(PLOT_AXIS_Y, ylabel);
plot.plotting();
return 0;

}

Program 7. A program for plotting two sets of data with legends.

Legend 1

X

Legend 2
Legend 3

Legend Position

y

x

Y

Figure 16. The position for legend.

22

6 HIGH-LEVEL GRAPHICAL PLOTTING 6.5 Using a Plotting Class to Plot Multiple Sets of Data

Exercises

1. Describe four methods that Ch can be launched in Windows after installation.

2. In a Ch command shell, type

ch -d

The startup configration filechrc in Windows or .chrc in Unix will be copied from CHHOME/config directory
to your home directory, where CHHOME is the home directory for Ch, such asC:/Ch for Windows and
/usr/local/ch for Unix. What’s your home directory?

3. In a Ch command shell, create a directory (folder) calledC99 in your home directory using command

mkdir c99

4. AssumeYourHomeDir is your home directory, the startup file ischrc for Windows and .chrc for Unix in your
home directory. Modify your startup file using ChSciTE by clickingOpen Ch Local Initialization
File underOption menu or any other text editor.

(a) AddYourHomeDir/c99 in the command search path for Ch. This can be done by adding

_path = stradd(_path, "YourHomeDir/c99;");

in your startup file.

(b) If you use Mac, Linux, or Unix, add the current directory to the command search path for Ch by adding

_path = stradd(_path, ".;");

in your startup file.

(c) Add the directoryYourHomeDir/c99 to function file search pathes for Ch programs by adding

_fpath = stradd(_fpath, "YourHomeDir/c99;");

in your startup file.

(d) AddYourHomeDir/c99 in the header file search path for Ch shell. for Ch programs by adding

_ipath = stradd(_ipath, "YourHomeDir/c99;");

in your startup file.

5. Setup an aliasc99 in Ch shell that will change directory toYourHomeDir/c99 by adding

alias("c99", "cd YourHomeDir/c99");

to your startup file.

6. What is the first statement that is typically included in a Ch shell program so that other shell programs, such as
bash, can recognize it as a Ch script.

7. Write a programplotting.c to plot functionf(x) = 2x2 ∗ sin(x) versusx whenx varies within the range
of −8.5 radian ≤ x ≤ 8.5 radian using plotting functionplotxy().

8. Write a program to plot functionsy1 = exp(x) +
√

x andy2 = sin(x) from x = 0 to π without labels in both
x and y axes. The plot shall have legends ofy1 andy2 for the curves of these two functions with 50 points for
each curve.

23

Index

.chrc, 9
chrc, 9
fpath, 13
ipath, 10
path, 9, 10

cd, 7
chmod, 9
chrc, 9
ChSchTE, 1
cp, 7
CPlot, 17

axisRange(),21
data2DCurve(),19
label(),19
legend(),21
legendLocation(),21
plotting(),19
title(), 19

fplotxy(), 15
fplotxyz(), 17
function

function files, 13

IDE, 1
Integrated Development Environment, 1

ls, 7

mkdir, 7

PLOT AXIS X, 20
PLOT AXIS XY, 20
PLOT AXIS XYZ, 20
PLOT AXIS Y, 20
PLOT AXIS Z, 20
plotting, 15
plotxy(), 15
prompt, 6
pwd, 7

remvar, 14
rm, 7
rmdir, 7

stradd(), 9, 10

24

